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Surface Area of a Strip on 2-sphere

The area covered by a strip of height of height h on a 2-dimensional
sphere of radius ρ is 2πρh
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Measure concentration on Sd−1

The striking fact is that for a large d , we only need small α to cover a
large percentage of the surface area of the unit d-sphere (Proof awaits!).

Formally, we can define a probability measure on the whole normalized
surface (with measure 1), such that for E ⊆ Sd−1

P(E ) =
σd−1(E )

σd−1(Sd−1)
(1)

For A ⊆ Sd−1, and t > 0, define At = {x ∈ Rd : dist(x ,A) ≤ t}. The
points in At are at most distance t away from A.
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Measure concentration on Sd−1

Theorem

Let A ⊆ Sd−1 with P(A) ≥ 1
2 . Then for any real t > 0,

1− P(At) ≤ 2e
−t2d

2

To obtain the strip around the equator, invoke the above by first taking A
to be the the northern hemisphere and then the southern hemisphere.
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Levy’s Lemma

Lemma (Lemma III.1 in [1])

Let f : Sk → R be a function with Lipschitz constant η and a point
X ∈ Sk be chosen uniformly at random. Then

Pr{f (X )− Ef < −α} ≤ 2 exp
(
−C1(k + 1)α

2

η2

)
where C1 > 0.

Intuition: A slowly varying function on the sphere (having small η) will
take values close to the average. The probability of being close to the
average gets close to 1 exponentially fast with increasing k
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Bounding the Lipschitz constant of S(ϕA) (1)

We let f (|ϕ〉) = S(ϕA), where |ϕ〉 ∈ A⊗ B. Since a dAdB−dimensional
quantum state can be represented by 2dAdB real vectors. Further noting
that any point on a k-sphere exists in (k + 1)-dimensional Euclidean the k
in Levy’s Lemma turns out to be 2dAdB − 1.

To apply Levy’s Lemma to the entropy of a reduced quantum state, what
remains is to bound the Lipschitz constant of S(ϕA).

Lemma (Lemma III.2 in [1])

The Lipschitz contant η of S(ϕA) is upper bounded by
√

8 log(dA), for
dA ≥ 3

Proof.

The strategy is to bound the Lipschitz constant of the Shannon, H,
entropy of a measurement M, H(M(ϕA)) and then use that to bound
S(ϕA).
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Bounding the Lipschitz constant of S(ϕA)(2)

Proof (continued).

The Schmidt decomposition of a bipartite pure state
|ϕ〉 =

∑
jk ϕjk |ej〉A|fk〉B for some orthornormal bases {|ej〉A} and {|fk〉B}.

Since the reduced state on A (actually on either of the two subsystems –
same spectrum) will give a diagonal matrix with |ϕjk |2 on the diagonals,

p(j |ϕ) = A〈ej |ϕA|ej〉A =
∑
k

|ϕjk |2 ,

Then, the von Neumann entropy of the reduced state on A

g(ϕ) = H(M(ϕA)) = −
∑
j

p(j |ϕ) log p(j |ϕ) .
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Bounding the Lipschitz constant of S(ϕA)(3)

Proof (continued).

Given that the states are normalized, one can obtain

η2 = sup∇g · ∇g =
∑
jk

4|ϕjk |2

(ln 2)2
[1 + ln p(j |ϕ)]2

≤ 4

(ln 2)2
[1 +

∑
j

p(j |ϕ)(ln p(j |ϕ))2]

∑
j p(j |ϕ)(ln p(j |ϕ))2 can be optimized with

∑
j p(j |ϕ) = 1 constraint

using the following Lagrangian

L =
∑
j

p(j |ϕ)(ln p(j |ϕ))2 + λ(1−
∑
j

p(j |ϕ))

∀j , ∂L
∂p(j |ϕ)

= ln p(j |ϕ))2 + 2 ln p(j |ϕ))− λ = 0
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Bounding the Lipschitz constant of S(ϕA)(4)

Proof (continued).

If dA ≥ 3, λ = ln p(j |ϕ))2 + 2 ln p(j |ϕ)) holds if
p(1|ϕ) = p(2|ϕ) = · · · = p(dA|ϕ) = 1

dA
. Then,∑

j

p(j |ϕ)(ln p(j |ϕ))2 ≤
∑
j

1

dA
(ln

1

dA
)2 = (ln dA)2

Therefore,

η2 ≤ 4

(ln 2)2
[1 +

∑
j

p(j |ϕ)(ln p(j |ϕ))2]

≤ 4

(ln 2)2
[1 + (ln dA)2] ≤ 8(log dA)2,

Choosing the measurement M along the eigenbasis of ϕA ensures
H(M(ϕA)) = S(ϕA). This completes the proof.
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Bound for ES(ϕA)

The final ingredient needed to invoke the Levy’s lemma for S(ϕA) is to
obtain a bound for ES(ϕA)

Lemma (Lemma II.4 in [1])

Let |ϕ〉 be chosen according to the unitarily invariant measure on a
bipartite system A⊗ B with local dimensions dA ≤ dB . Then

ES(ϕA) > log dA −
1

2
β ,

where β = 1
ln 2

dA
dB
.
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Almost maximally entangled states!

Theorem

Let |ϕ〉 be chosen according to the unitarily invariant measure on a
bipartite system A⊗ B with local dimensions dB ≥ dA ≥ 3. Then

Pr

{
S(ϕA)− log dA < −α−

1

2
β

}
≤ 2 exp

(
−dAdBC3α

2

(log dA)2

)
,

where C2 = C1/4 > 0

Proof.

Taking f (ϕ) = S(ϕA) in Levy’s Lemma, we have
Pr{f (X )− Ef < −α}= Pr {S(ϕA)− ES(ϕA) < −α} ≤
2 exp

(
−C1(k + 1)α

2

η2

)
Having established that η ≤

√
8 log dA and

ES(ϕA) < log dA − 1
2β, we get

Pr
{
S(ϕA)− log dA < −α− 1

2β
}
≤ 2exp(−C12dadBα

2

8(log dA)2
)
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What does the concentration of entropy mean?

It can be shown that using Lagrange multipliers (as shown earlier) that the
maximum entropy of a d-dimensional is log dA

The theorem says that if you trace out ANY random pure state, the
reduced subsystem is almost always maximally entangled

”almost always” is dictated by an extremely high probability that
approaches unity exponentially fast with the increasing dimension of the
subsystem A.
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Thank you! Questions?
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