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1 Introduction and Student Information

Name: Asad Raza
Email: araza6-c@my.cityu.edu.hk; asadraza1999@hotmail.com
GitHub: https://github.com/araza6
Twitter: https://twitter.com/hermitianasad
Blog: https://araza6.github.io/
University: City University of Hong Kong
Major: Computing Mathematics
Minors: Physics & Computer and Science
Project Name: Machine Learning with QuTiP

2 Abstract

In recent years, there has been a rise of interesting applications of Machine Learning to solve problems
in quantum physics [7]. Also, there has been a whole new inter-disciplinary field of Quantum Machine
Learning [8] that aims to harvest ideas from quantum physics to make computers learn better.
This project aims to open-source tools to perform experiments/simulations that would help the users
discern how machine learning can be used to solve certain problems in quantum physics.
The idea is to inculcate machine learning tools natively into QuTiP and integrate them with the
existing QuTiP modules in order to leverage machine learning prowess in simulation open (which is
QuTiP’s forte) and closed quantum systems.

3 Technical Details

This part of the proposal aims to explain in detail the extension to the existing functionalities that
this proposed GSoC project could bring about in QuTiP.

3.1 Making QuTiP Auto-differentiable

Currently in QuTiP, one can initialize Hamiltonians, exponentiate them for evolution – with and
without noise, among other things. One limitation, however, is that one cannot natively differentiate
these exponents of Hamiltonians. In order to solve this, auto differentiation libraries like JAX and/or
Autograd can be used. The reason these libraries would be a good choice to integrate with QuTiP
for the said purpose is that they already provide robust ways to efficiently compute the derivatives of
python and Numpy functions, which is what QuTiP is largely built on.

3.1.1 Benefits of Auto-Differentiable QuTiP

With auto-differentiable QuTiP, one can differentiate the desired unitary and non-unitary operators
and optimize the initial variational parameters of, say, an initial wavefunction or density matrix using
gradient descent or other optimization methods.
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A possible extension, if time allows, would be to allow users to natively optimize the the parameters
of their initial unitary using different optimization backends. That is to say, to give users the freedom
to chose beyond the simple gradient descent optimization, and experiment with for example Adagrad,
Adamax, etc. Widely used machine learning libraries Pytorch and Tensorflow come pre-packaged with
torch.optim and tf.keras.optimizers that provide many of those different optimizers to choose from.
Integration of these library(-ies) with QuTiP, like PennyLane does with TensorFLow and Pytorch
(among others) shall allow users to perform aforementioned optimization of desired unitaries with
minimal friction in the workflow.

3.2 Calculating Loss with Density Matrices

In many machine learning tasks, the aim is to minimize some sort of cost function (which may or may
not be convex) with respect to the given parameters. This cost function, although has some canonical
representation in classical machine learning literature (one of the famous ones being the mean-squared
error loss), formulation is still somewhat application dependent. The main idea however remains the
same – to minimize the difference between what we want to predict and what are we actually predicting.

This cost function formulation can take slightly different forms when we apply machine learning
to quantum physics, depending on the application. If we want to predict the target wavefunction by
optimizing the initial ansatze, one way to do it is what Netket (a machine learning library for quantum
many-body physics) does. The idea is to capture the similarity between the target state, ψtar and the
α-parametrized variational state, ψNN (α) as implemented in [10].

L(α) = −log 〈ψtar|ψNN (α)〉
〈ψtar|ψtar〉

〈ψNN (α)|ψtar〉
〈ψNN (α)|ψNN (α)〉

(1)

Loosely speaking, one can say that 1 does capture fidelity between ψtar and ψNN (α) if normalization
and absolute value-squared is ignored. This notion of loss calculation, however, would need further
development if the idea is to be generalized to mixed states. Since mixed states are characterized by
density matrices, we would be needing a tool that (intuitively speaking) measures the difference (or
similarity) between two density matrices of the target state, ψtar and of the parametrized predicted
state (parametrized by, say, α), ψpred(α).

3.3 Unitary Learning

Present Quantum Machine Learning libraries like PennyLane [11] and the recent TensorFlow Quantum
[9] focus on circuit based learning. QuTiP’s Quantum Machine Learning module has a potential to
stand out if it provides tools to understand Hamiltonian Learning. A simple example of unitary
learning is given in the following code-snippet using QuTiP where we start with an initial (mixed
state) 4 × 4 density matrix and act random initial 4 × 4 unitary matrix with the intention to get it
closer to the target density matrix (which we randomly choose and fix).
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from qutip import *

def dm_fidel(dm_init, dm_tar, unit_init): #function to calculate the fidelity between initial and

evolved density matrices

dm_new = unit_init*dm_init # State after the the unitary acts on intial density matrix

return fidelity(dm_new,dm_tar) # QuTiP’s fidelity function that calculates fidelity btw two density

matrices

dm_init = rand_dm(4,0.5) # Initial density matrix

dm_tar = rand_dm(4,0.5) # Target/Desired density matrix

unit_init = rand_unitary(4) #Initial Unitary to act on the density matrix

print(dm_fidel(dm_init, dm_tar,unit_init))

The fidelity (roughly) using the above code ranges mostly from 0.4 to 0.6. This is not too surprising
given that we have random matrices each time. However, the task is to improve the entries in the
unitary matrix such that the fidelity improves for a given target state. This can be done by reducing
the error, which for the case of pure states is formulated to be the following by [1]

E = 1− (
1

M
)
∑
l

〈ψl|U †U(~t, ~τ)|ψl〉 (2)

where U is the target unitary and U(~t, ~τ) is the parameterized unitary that we aim to steer towards
U , while M is the number of training examples of input and output pairs |ψl〉 and U |ψl〉 respectively.

The error can then be minimized using gradient descent [2] or similar optimization routines.
One way the aforementioned idea can be generalized to mixed states is the following:

E = 1− (
1

M
)
∑
l

tr(ρlU
†U(~t, ~τ)) (3)

where ρl is the target density matrix instead of the target ket.

Therefore, the goal here is to open-source tools such that the target unitary U can be learnt efficiently
for both pure and mixed states. Some useful QutiP modules here shall be the method q.tr() of class
Qobj, random quantum states and operators like rand_ket, rand_dm, and rand_unitary and the fidelity
calculation method fidelity().

3.4 Dissipative dynamics prediction for non-unitary evolution

A general extension to the aforementioned unitary learning idea is to learn the dynamics of non-
unitary open quantum systems – which is QuTiP’s forte. The idea here is somewhat similar. We have
a target density matrix and the system’s Hamiltonian. The goal is to optimize for the free parameters
in the Lindblad terms such that the target density matrix can be reached efficiently starting the
evolution from an initial density matrix. Such evolution of open (and also closed) quantum systems
can be studied using QuTiP’s mesolve module. A callback function can be passed as argument to e_ops

in mesolve to calculate the fidelity/cost function at each time step in tlist in order to optimize the
Lindblad free parameters at each discreet time step.
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One way to optimize the free parameters in the Lindblad terms would be to run, say, gradient descent
to find the free parameters such that fidelity of the evolved density matrix and initial density matrix
is improved – which can be cast as a cost function for this problem.
There has been recent interest in this area [4] [5] [6] and inspiration can be taken from these and
similar works along the way.

4 Schedule of Deliverables

4.1 Community Bonding Period: May 2, 2020 - June 2, 2020

During the community bonding period, I will start looking into the relevant literature that I think
might be useful for the project and to brush up on relevant physics-based concepts. I will spend
this time understanding the code base and producing minimal working code to motivate the module
under development. Lastly, I will make try as much as possible to get to know the QuTiP developer
community, interact with them and head start a great journey.

4.2 Week 1 and 2

Work on integrating auto-diff libraries, most likely JAX, into QuTiP. I will write wrappers in this
time that can convert QuTiP’s Qobj into JAX compatible functions to be easily differentiated.

4.3 Week 2

Complete the method to calculate the gradient of the fidelity function with respect to any parameters
of interest. This might just be an addition to the list of fidelity methods already provided by QuTiP.
Possibly use the delivered items in the first two weeks for this task.

4.4 Week 3

Make a class for optimizers and implement canonical optimization methods in it – Stochastic Gradient
Descent, Adagrad, etc.

4.5 Week 4

Write a method for unitary learning that takes initial unitary and density matrices and target density
matrix, along with one of the optimizer methods built in Week 3 to perform unitary learning. This
method would return the optimized unitary.

Phase 1 Evaluation

4.6 Week 5

Collect data where input is the initial state (pure or mixed) and output is the final state after the
action of the unitary and reproduce [2].
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4.7 Week 6

Write pytests for the code written in Weeks 1 - 5 and write helper functions, where need be.

4.8 Week 7 and 8

Extend the module (method) for unitary learning to open quantum systems such that passing in the
collapse operators would treat the system as open (like mesolve) and would optimize the method for
free parameters of the dissipative terms. An extension in the open quantum system version would be
to also have an argument that lets the user to print the optimized free parameters and not just the
final density matrix.

Phase 2 Evaluation

4.9 Week 9

Explore the performance of different cost functions. [1] does it as shown in ??. One possible way to
do for density matrices is, in my opinion, 3, but other optimal cost functions can be formulated to
plot graphs of accuracy against time (for training) in order to benchmark all those cost functions and
to ship them. A class of cost functions, similar to that of optimizers can be designed to ship all the
cost functions that might be of interest to the users, depending on the use-cases and trade-offs.

4.10 Week 10 and 11

Complete documentation of the newly built modules, fix bugs (if any) and write additional unit tests.

4.11 Week 12

Complete Jupyter Notebook tutorials for Auto-diff, unitary and non-unitary learning.

Final Evaluation

5 Other Information

5.1 Why QuTiP?

QuTiP is the one of the most used, or I should say the most used library, for quantum physics
simulations. Recently, QuTiP has been extending its focus to quantum information. GSoC 2019
summer project on qutip.qip.noise module is a testimony to that.
As a Math major (and physics and computer science minor), I believe my background and interest
in the fields of machine learning and quantum computing can complement very well with this GSoC
summer project. Lastly, as an advocate for open-source, it would indeed be an honor to make tools
for open science.
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5.2 Relevant Background

5.2.1 Past experience

I claim a reasonably good background in machine learning and quantum information. I did some
work [3] at the intersection of Reinforcement Learning and Quantum Control, after which I have been
looking into ways to marry Quantum Information and Machine Learning.
In the summer of 2019, I was at Entropica Labs (a quantum machine learning startup in Singapore)
on variational algorithms. In particular, applying Deep Learning machinery on the parameters (betas
and gammas) in QAOA to discern if we can learn something useful about the optimal ansatz. We got
some interesting results.

5.2.2 Knowledge of Libraries and/or Technology stacks

As for the familiarity with technology stacks, I have extensively used Rigetti’s Forest framework for
projects related to quantum computing. Pytorch and sci-kit-learn are my go-to machine learning
libraries and Pennylane for quantum machine learning. Numpy is the library that I have used most
in my projects. It is a library that I often use for school work as well (almost every week). Since all
the above mentioned libraries are written in Python (and QuTiP as well), I claim to be fluent with
Python programming in general.
In the two internships I have done in the past, I had to use git day in and day out. For any collabora-
tive school projects (and even for hosting my personal website), I have leveraged git for version control.

There are libraries, however, that I have not tinkered around with that can be potentially useful for
the project. TensorFlow Quantum [9] and NetKet[10] are the ones. Apart from the technology stack,
I think I will have to put in extra effort during the project to learn about open quantum systems since
the project will certainly require a strong knowledge base in that area as well, whereas I have only
studied closed quantum systems in the past.

5.3 Past interaction with mentors

I have been in contact with the mentors via email shortly after QuTiP was announced as one of the
participating organizations. Since I was interested in a project at the intersection of quantum physics
and machine learning, I emailed the mentors about my idea to integrate machine learning in some
QuTiP modules and that was well-taken.
I had a Zoom chat with Nathan and Shahnawaz, and we further polished the initial ideas and drafted
new ideas about how to go about this project. Based on back and forth communication with the
mentors, I was able to finally draft this proposal.

5.4 Other Commitments

I have no other commitments during the summer. For project catch-up, I will be available via Skype/-
Zoom in Hong Kong Time Zone, GMT +8h.
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Johannes Jakob Meyer, Zeyue Niu, Antal Száva, Nathan Killoran. PennyLane: Automatic differen-
tiation of hybrid quantum-classical computations https://arxiv.org/abs/1811.04968

8


	Introduction and Student Information 
	Abstract
	Technical Details
	Making QuTiP Auto-differentiable
	Benefits of Auto-Differentiable QuTiP

	Calculating Loss with Density Matrices
	Unitary Learning
	Dissipative dynamics prediction for non-unitary evolution

	Schedule of Deliverables
	Community Bonding Period: May 2, 2020 - June 2, 2020
	Week 1 and 2
	Week 2
	Week 3
	Week 4
	Week 5
	Week 6
	Week 7 and 8
	Week 9
	Week 10 and 11
	Week 12

	Other Information
	Why QuTiP?
	Relevant Background
	Past experience
	Knowledge of Libraries and/or Technology stacks

	Past interaction with mentors
	Other Commitments


